In-depth market report sizing the opportunity of the fast growing Industry 4.0 & Smart Manufacturing market from 2018-2023. The 375-page report includes market forecasts across 7 regions, 6 supporting technologies, and 6 connected industry building blocks. The report also details 38 case studies, profiles 350+ leading suppliers, describes 79 trends, and analyzes 12 key use cases.
INDUSTRY 4.0 & SMART MANUFACTURING 2018-2023

Date: November 2018

Authors: Matthew Wopata, Julian Rickert, Knud Lasse Lueth, Padraig Scully
Table of Contents

1 **Executive Summary**
 1.1 Overall Highlights ix
 1.2 Market Analysis x
 1.3 Key Use Case Analysis xi
 1.4 Nine Disruptive Trends xi
 1.5 I4.0 Adoption Strategies xii

2 **Introduction**
 2.1 History of Industry 4.0 1
 2.2 Elements of Industry 4.0 10

3 **Industry 4.0 Market Analysis 2018-2023**
 3.1 Overall I4.0 Market 13
 3.2 Connected Industry Building Blocks Market 15
 3.2.1 By Connected Industry Building Block 15
 3.2.2 By Region 17
 3.2.3 Regional deep-dive: North America 18
 3.2.4 Regional deep-dive: Europe 19
 3.2.5 Regional deep-dive: Asia 20
 3.2.6 Regional deep-dive: Other 21
 3.3 Supporting Technologies Market 22

4 **Connected Industry Building Blocks**
 4.1 Hardware 26
 4.1.1 Microchips 27
 4.1.2 Sensors 31
 4.1.3 Connectivity Hardware 38
 4.2 Connectivity 50
 4.2.1 Network Protocols 51
 4.2.2 M2M/Network Services 71
 4.3 Cloud, Platform, & Analytics 84
 4.3.1 Hosting Environment 85
 4.3.2 IoT Platforms 93
 4.3.3 Data Analytics & AI 101
 4.4 Applications 117
 4.4.1 Application Development and AEPs 118
 4.4.2 Industrial App Store & Distribution Methods 121

© 2018 IoT Analytics. All rights reserved. iii
4.5 System Integration 122
4.6 Cyber Security 128
 4.6.1 IT vs. OT Security 129
 4.6.2 Overview of IoT Attack Surfaces 131
 4.6.3 Common IoT Threats 134
 4.6.4 Recent I4.0 Related Attacks 136
 4.6.5 Industry 4.0 Trends 137
 4.6.6 Leading Suppliers 138

5 Disruptive Trends 142
 5.1 Trends Disrupting the 5-Layer Automation Pyramid 143
 5.1.1 Trend 1: Software Applications and Data Are Moving to the Cloud 145
 5.1.2 Trend 2: SCADA, MES, and ERP Systems Are Converging 152
 5.1.3 Trend 3: New Edge Devices Are Connecting Directly to the Cloud 154
 5.2 Other Disruptive Trends 161
 5.2.1 Trend 4: PLCs Are Becoming Virtualized Software Programs 161
 5.2.2 Trend 5: Manufacturing Capacity Is Being Sold as a Service 163
 5.2.3 Trend 6: Machines are Being Sold as a Service 164
 5.2.4 Trend 7: Production Setups Are Becoming Flexible 165
 5.2.5 Trend 8: Value Chains Are Becoming More Integrated 165
 5.2.6 Trend 9: New Distribution Methods Are Utilizing the Web 165

6 Supporting Technologies 166
 6.1 Additive Manufacturing (AM) 167
 6.1.1 Overview 168
 6.1.2 I4.0 Applications 172
 6.1.3 Market Size and Growth 176
 6.1.4 Disrupted Industries 177
 6.1.5 Trends 178
 6.1.6 Leading Suppliers 181
 6.2 Augmented and Virtual Reality 187
 6.2.1 Overview 188
 6.2.2 I4.0 Applications 190
 6.2.3 Market Size and Growth 191
 6.2.4 Disrupted Industries 192
 6.2.5 Trends 193
 6.2.6 Leading Suppliers 195
 6.3 Collaborative Robotics 201
 6.3.1 Overview 202
 6.3.2 I4.0 Applications 204
 6.3.3 Market Size and Growth 205
 6.3.4 Disrupted Industries 206
6.3.5 Trends
6.3.6 Leading Suppliers

6.4 Connected Machine Vision
6.4.1 Overview
6.4.2 I4.0 Applications
6.4.3 Market Size and Growth
6.4.4 Disrupted Industries
6.4.5 Trends
6.4.6 Leading Suppliers

6.5 Drones/UAVs
6.5.1 Overview
6.5.2 I4.0 Applications
6.5.3 Market Size and Growth
6.5.4 Disrupted Industries
6.5.5 Trends
6.5.6 Leading Suppliers

6.6 Self-Driving Vehicles (SDVs)
6.6.1 Overview
6.6.2 I4.0 Applications
6.6.3 Market Size and Growth
6.6.4 Disrupted Industries
6.6.5 Trends
6.6.6 Leading Suppliers

7 Key Use Cases
7.1 Additive Production
7.1.1 Case Study: Mercedes Benz Trucks reduces costs with 3D printed spare parts
7.1.2 Case Study: Siemens accelerates repair process by a factor of 10 using 3DP parts
7.1.3 Case Study: Oreck uses AM to reduce manufacturing costs of fixtures by 65%

7.2 Advanced Digital Product Engineering
7.2.1 Case Study: SEAT cuts development time by 30% with virtual reality
7.2.2 Case Study: Volvo uses AM to cut cost and development time by ~90%
7.2.3 Case Study: Bausch + Ströbel uses VR + digital twins to reduce time to market by ~30%
7.2.4 Case Study: Ford moves towards digital twins to improve automotive design processes

7.3 Augmented Operations
7.3.1 Case Study: Bechtle reduces walking time by 50% using AR
7.3.2 Case Study: Bühler uses augmented reality to streamline operations

7.4 Data-Driven Asset/Plant Performance Optimization
7.4.1 Case Study: Audi uses advanced analytics to realize millions in cost savings
7.4.2 Case Study: KIANA Systems uses machine vision & analytics to drastically reduce error rate

7.4.3 Case Study: Wafios improves machine throughput using cloud analytics

7.4.4 Case Study: Stanley Black & Decker increases OEE by 24% and first pass quality by 16%

7.4.5 Case Study: Massilly uses autonomous forklifts to increase production capacity

7.5 Data-Driven Inventory Optimization

7.5.1 Case Study: Schneider Electric identifies opportunity to reduce SKUs by ~30%

7.5.2 Case Study: AFI saves 2 man-months per year with smart bin system

7.6 Data-Driven Quality Control

7.6.1 Case Study: OPEL reduces programming and measuring time by >80% using optical quality control

7.6.2 Case Study: Daimler automates in-line quality control of multi-variant products

7.6.3 Case Study: Sturm uses connected machine vision to create fully digitized production

7.6.4 Case Study: Kemppi improves product quality while reducing development time by ~50% using IIoT technology

7.7 Everything-as-a-Service Business Models

7.7.1 Case Study: Standard Motor Products uses manufacturing-as-a-service marketplace to reduce lead time by up to 70% and costs by up to 90%

7.7.2 Case Study: PepsiCo use Protolabs to go from concept to market in < 6 months

7.7.3 Case Study: Heller differentiates product offering with machine-as-a-service

7.8 Human-Robot Collaboration

7.8.1 Case Study: Siemens uses collaborative robots to supplement operations

7.8.2 Case Study: Kuka uses robots to manufacture robots

7.8.3 Case Study: Hirotec strives for “lights-out production” with SDVs + Cobots

7.8.4 Case Study: SFEG improves output by 20% with portable collaborative

7.9 Predictive Maintenance

7.9.1 Case Study: HPE uses edge gateways + analytics to predict & prevent wind turbine failures

7.9.2 Case Study: Auto manufacturer saves ~$40M in downtime by sending data to the cloud

7.9.3 Case Study: Fero labs helps oil refinery increase revenue by $4M using PdM

7.10 Remote Asset Testing/Inspection/Certification

7.10.1 Case Study: INEOS lowers costs and improves safety by using drones for inspections

7.10.2 Case Study: Oil and gas operator uses Remotely Operated Aerial Vehicles (ROAV) to save hundreds of days of work

7.10.3 Case Study: Siemens uses drones to reduce wind turbine inspection
7.11 Remote Service
7.11.1 Case Study: TRUMPF reduces support costs and increases quality with remote service
7.11.2 Case Study: Heidelberg uses remote service to reduce costs & offer new services
7.11.3 Case Study: thyssenkrupp reduces service time by 4x by using AR and remote connectivity

7.12 Virtual Training
7.12.1 Case Study: Normet uses VR and simulation to improve operator efficiency by 23%
7.12.2 Case Study: KOC reduces accidents & accelerates operator onboarding using VR

7.13 Other use cases
7.14 Use Case Appendix
7.14.1 Advanced Digital Product Engineering: Definition of Digital Twins
7.14.2 Data-Driven Inventory Optimization: Definition of Multi-Echelon Inventory Optimization

8 I4.0 Adoption Strategies
8.1 OEMs
8.1.1 Overview
8.1.2 Case Study: Liebherr fleet management for construction equipment
8.1.3 Case Study: Rolls-Royce condition monitoring for aircraft engines
8.1.4 Case Study: Kärcher cleaning machinery fleet management
8.1.5 Case Study: Heidelberg connected printing machines
8.1.6 Adoption Strategy Comparison: OEMs from Different Industries
8.1.7 Adoption Strategy Deep-Dive: Elevator OEMs

8.2 Smart Factories
8.2.1 Overview
8.2.2 TRUMPF Smart Factory
8.2.3 GE Brilliant Factory
8.2.4 Audi Smart Factory
8.2.5 SmartFactory KL320
8.2.6 SmartFactory OWL
8.2.7 Other Smart Factories
8.2.8 Deep-dive: Lean Manufacturing and Industry 4.0

8.3 Industrial Automation Suppliers
8.3.1 Overview
8.3.2 I4.0 Readiness Assessments of Top 5 Industrial Automation Vendors
8.3.3 Others Large Vendors ($3B+ I4.0 Related Revenue)
8.3.4 Smaller Vendors (<$3B I4.0 Related Revenue)
9 Associations, Foundations, Committees to watch

9.1 Plattform Industrie 4.0
9.2 Labs Network Industrie 4.0
9.3 Industrial Internet Consortium (IIC)
9.4 OPC Foundation
9.5 Industrial Data Space Association
9.6 CyberValley of Baden Württemberg
9.7 Center for the Development and Application of Internet of Things Technologies
9.8 Manufacturing USA

10 Appendix

10.1 Market definition, sizing, and methodology
10.1.1 Industry 4.0 definition:
10.1.2 IoT definition:
10.1.3 IIoT and Connected Industry definition:
10.1.4 Connected Industry building blocks definition:
10.1.5 Market Sizing:
10.1.6 Methodology:
10.2 List of Acronymst
10.3 List of Exhibits
10.4 List of Tables

About

Selected recent publications
Upcoming publications
Subscription
Newsletter
Main Author
Other Authors:
Contact Us

Copyright
1 Executive Summary

The term Industrie 4.0 (I4.0) was introduced by German thought leaders at the 2011 Hannover Fair Exhibition and has since been adopted around the globe as the common term to describe the 4th industrial revolution. While there is no single widely-accepted definition of the I4.0 market, this report defines the overall I4.0 market as the sum of the Connected Industry building blocks market (the manufacturing subset of the Industrial Internet of Things [IIoT]) and the market for other I4.0 supporting technologies.

This report highlights how manufacturers are implementing these Connected Industry building blocks and the six other I4.0 supporting technologies (additive manufacturing, AR/VR, collaborative robotics, connected machine vision, drones/UAVs, and self-driving vehicles) to realize twelve key use cases that are driving the 4th industrial revolution.
1.1 Overall Highlights

- The overall I4.0 market reached $XXB in 20XX, with Connected Industry building blocks comprising XX% of the market ($XXB) and supporting technologies (13B).
- The overall I4.0 market is growing at a CAGR of 37%, led by growth in the Connected Industry building blocks subset (XX% CAGR).
- Advanced digital product engineering will be the largest use case in the market.
- Additive production and augmented operations are expected to be the fastest growing use cases (~XX% CAGR).
- Growth in I4.0 adoption is largely driven by three types of value generated by I4.0 use cases:
 1. Efficiency gains across the whole organization (DanLJ industrial organizations haƚe estimated productiƚ gains in I4.0 technologies to be ΕXX%.
 2. New revenue streams (KD$s are leƚeraging /d.od technologLJ to create neƚ džͲasͲaͲserǀice business models better align OEMs with customers’ objectives by incentiƚng KDs to ŵaŬe sure their ŵachines are operating properlLJ.
 3. More flexible, customer centric operations that XXX: I4.0 technologies enable manufacturers to be more xxxx.

1 IoT Analytics Interview: Manufacturing end-users believe this number is possible and set it as goal.
2 Introduction

Industry 4.0\(^2\) (I4.0) and the Industrial Internet of Things (IIoT) are both terms describing disruptive technology trends in industrial settings. The terms are sometimes used interchangeably; however, in order to fully comprehend the content of this report, it is important to understand the differences between Industry 4.0 and IIoT.

IIoT is the industrial subset of the Internet of Things (IoT). At a high level, IoT is about adopting the internet in almost all economic activities, and it focuses on the technology backend for cross category connectivity and interoperability. The emergence and swift development of the IoT is driven by the six major technological developments shown in Exhibit 1:

1. Increased adoption of mobile devices
2. Declining costs for hardware such as sensors\(^3\)
3. Declining costs of bandwidth
4. Declining costs of data handling, such as processing ($/MIPS\(^4\)) and data storage ($/GB)
5. Decreased size of hardware elements
6. Increased maturity of big data tools and infrastructure

\(^2\) From now on used synonymously with Industry 4.0
\(^3\) Through the economies of scale potential from e.g. smartphone production and operation.
\(^4\) Million Instructions Per Second
EXHIBIT 1: Technology drivers behind the Internet of Things

The Industrial IoT (IIoT) refers to heavy industries such as manufacturing, energy, oil and gas, and agriculture in which industrial assets are connected to the internet. Within IoT, different segments are more “industrial” than others, and “Connected Industry”, which specifically focuses on manufacturing, is on the most industrial end of the spectrum as shown in Exhibit 2.
Connected Industry is also the largest segment within IoT, comprising over 30% of the market in 2017. Connected Industry overlaps with the overall I4.0 market, but I4.0 has a broader scope; it aims to optimize the entire manufacturing value chain and includes other I4.0 supporting technologies. Exhibit 3 illustrates the overlap of I4.0 with IoT and highlights the other I4.0 supporting technologies.

EXHIBIT 3: Comparison of IoT and Industry 4.0 in terms of industry and technology scope (adapted from Plattform Industrie 4.0)

Industry 4.0 market can be viewed as the combination of the building blocks that make-up the **Connected Industry** market plus the market for other **I4.0 supporting technologies**:
3 Industry 4.0 Market Analysis 2018-2023

Chapter Overview

This section quantifies the overall I4.0 market size as well as the market sizes for the two subsets of the overall I4.0 market:

1. Connected Industry Building Blocks
2. Supporting Technologies

Section Overview

<table>
<thead>
<tr>
<th>3.1 Overall I4.0 Market</th>
<th>3.2 Connected Industry Building Blocks Market</th>
<th>3.3 Supporting Technologies Market</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.2.1 By Connected Industry Building Block</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2.2 By Region</td>
<td></td>
</tr>
</tbody>
</table>

Chapter Takeaways

1. The overall industry 4.0 market reached $XXB in 20XX and is expected to reach $XXX by 20XX, resulting in a CAGR of XX%. Connected Industry building blocks made up XX% ($SX) and supporting technologies made up XX% ($XXXX).

2. The Connected Industry building blocks market reached $XXB in 20XX and is expected to grow to $XXX in 20XX, with applications ($XX) followed by hardware ($XX).

3. The supporting technologies market reached $XXB in 20XX and is expected to grow to $XXX by 20XX, with the biggest supporting technologies ($XX) followed by connected manufacturing ($XX).

4. Growth is driven by 3 types of value derived from use cases:
 1. Efficiency
 2. New revenue streams
 3. Improved, customer-centric operations that reduce time-to-market.
3.1 Overall I4.0 Market

The global market for Industry 4.0 solutions reached $48B in 2017 and is expected to grow at a CAGR of XX% to $XX in 20XX. The Connected Industry building blocks subset of the market is expected to grow from $XXX in 20XX to $XXX in 2023 with a CAGR of 40% (due to the relative maturity of the technologies that make up this subset). The growth of the market for the supporting technologies subset is projected to grow from $XX in 2017 to $53B in 2023 with a more modest CAGR of 26% due to the relative maturity of the technologies that make up this subset.

The growth of the I4.0 market is largely driven by three types of value delivered from the I4.0 use cases:

1. Efficiency gains across the whole organization
 - Danilo Technologies has estimated productivity gains of 5% due to investments in I4.0 technologies.
 - Example: FANUC + Cisco

 Danilo is an IoT manufacturer and is believed to have set the same productivity goal.

 Source: Cisco

Note: The overall market for I4.0 refers to global spending on the six connected industry building blocks and six I4.0 supporting technologies.

Source: IoT Analytics – October 2018

EXHIBIT 10: Global I4.0 market 2017-2023 (Source: IoT Analytics)
4 Connected Industry Building Blocks

Chapter Overview
This chapter explores the six connected industry building blocks that comprise the modern IIoT technology stack:

1. Hardware
2. Connectivity
3. Cloud, Platform, & Analytics
4. Applications
5. System Integration
6. Cyber Security

Section Overview

<table>
<thead>
<tr>
<th>4.1 Hardware</th>
<th>4.2 Connectivity</th>
<th>4.3 Cloud, Platform, & Analytics</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1 Microchips</td>
<td>4.2.1 Network Protocols</td>
<td>4.3.1 Hosting Environment</td>
</tr>
<tr>
<td>4.1.2 Sensors</td>
<td>4.2.2 M2M/Network Service</td>
<td>4.3.2 IoT Platforms</td>
</tr>
<tr>
<td>4.1.3 Connectivity Hardware</td>
<td></td>
<td>4.3.3 Data Analytics & AI</td>
</tr>
<tr>
<td>4.4 Applications</td>
<td>4.5 System Integration</td>
<td></td>
</tr>
<tr>
<td>4.4.1 Application Development and AEPs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4.2 Industrial App Store & Distribution Methods</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter Takeaways

1. XXXXX. T
2. Companies are XXXXXXXXXX. IoT platforms hosted solely on-premise are declining. The market share of IoT platforms hosted solely on-premise is projected to drop from 3% in 2017 to 3% in 2018. IoT platform vendors are increasingly including analytics tools (e.g. Microstrategy, Microstrategy, etc.) which allows customers to track performance easily at scale.
3. IoT platforms are increasingly adding platform-specific edge computing agents. Platform-specific edge computing agents are becoming more common. IoT platforms are increasingly adding computing and storage capabilities at the edge (e.g., VxWorks, etc.) which is leading to more hybrid deployments with both edge and cloud architectures in place.
4. AI algorithms still require domain-specific expertise. AI algorithms still require domain-specific expertise. Suppliers of AI technologies hope to eventually develop models that can be easily adapted between companies and use cases; however, that vision has not yet been realized. Models are still very dependent on industry-specific training datasets and input subject matter experts.
5. Low cost/risk POCs gaining in popularity. Low cost/risk POCs are gaining in popularity. Users are reluctant to allocate large budgets to I4.0 projects. For example, systems integration firms like XXXXX, XXXXX, and XXXXX have allocated large budgets to XXXX 14.0 projects. For example, systems integration firms like XXXXX, XXXXX, and XXXXX have allocated large budgets to XXXX 14.0 projects. For example, systems integration firms like XXXXX, XXXXX, and XXXXX have allocated large budgets to XXXX 14.0 projects.
6. LoRa is the 2017 market leader in LPWAN technologies, followed by Sigfox, and NB-IoT.
5 Disruptive Trends

Chapter Overview

I4.0 is commonly thought of as an evolution rather than a revolution, but I4.0 has the potential to disrupt a number of standards and industries in the long run. This chapter shows how the well-defined 5-layered technology architecture is already being disrupted with new connectivity models, and how other industrial processes and industries will also likely see significant changes.

Section Overview

<table>
<thead>
<tr>
<th>5.1</th>
<th>The 5-Layer Automation Pyramid</th>
<th>5.2</th>
<th>Other Disruptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.1</td>
<td>Trend 1: Software Applications and Data Are Moving to the Cloud</td>
<td>5.2.1</td>
<td>Trend 4: PLCs Are Becoming Virtualized Software Programs</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Trend 2: SCADA, MES, and ERP Systems Are Converging</td>
<td>5.2.2</td>
<td>Trend 5: Manufacturing Capacity Is Being Sold as a Service</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Trend 3: Edge to Cloud Connectivity</td>
<td>5.2.3</td>
<td>Trend 6: Machines Are Being Sold as a Service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.2.4</td>
<td>Trend 7: Production Setups Are Becoming Flexible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.2.5</td>
<td>Trend 8: Value Chains Are Becoming More Integrated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.2.6</td>
<td>Trend 9: New Distribution Methods Are Utilizing the Web</td>
</tr>
</tbody>
</table>

Chapter Takeaways

1 Major trends:
A. The migration of software applications to the cloud
B. The convergence of SCADA, MES, and ERP systems
C. New devices connecting directly to the cloud

2 New XX FieldEdge cloud adoption. Advances in cellular communication, cyber security, and industrial gateways are making it more technically viable for companies to move their SCADA and MES systems to the cloud.

3 Manufacturers where edge connectivity is advertised online, the emerging manufacturing-as-a-service ecosystems allows connected manufacturers to sell their excess manufacturing capacity online to customers equipped with digital product designs.

4 Machine-as-a-Service business models bring new revenue and accounting challenges. More machines are being sold to manufacturers as services. Investors and KDs are grappling with the revenue and accounting implications of manufacturing customers switching to higher OPEX and lower CAPEX businesses.
6 Supporting Technologies

Chapter Overview
This chapter explores the six I4.0 supporting technologies that are contributing (to varying degrees) to the rapid growth of the overall I4.0 market:
1. Additive Manufacturing
2. Augmented and Virtual Reality
3. Collaborative Robotics
4. Connected Machine Vision
5. Drones/UAVs
6. Self-Driving Vehicles

Section Overview

<table>
<thead>
<tr>
<th>6.1</th>
<th>Additive Manufacturing</th>
<th>6.2</th>
<th>Augmented and Virtual Reality</th>
<th>6.3</th>
<th>Collaborative Robotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Studies</td>
<td></td>
<td>Case Studies</td>
<td></td>
<td>Case Studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.4 Connected Machine Vision</td>
<td>6.5 Drones/UAVs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case Studies</td>
<td>Case Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter Takeaways

1. **Additive Manufacturing** market. With revenue at $9 billion in 2017 and a projected $17 billion in 2025, additive manufacturing is and will XXXXXX XXXXX companies adopt the technology for more than just prototyping.

2. **Connected Machine Vision**. Higher labor costs and falling robot costs are driving collaborative robot adoption. For example, Zobotics prices will continue to fall even as wages increase in both developed and developing countries.

3. **Collaborative Robotics**. Mobile collaborative robots are gaining in popularity. Companies are designing their collaborative robots to be highly portable, allowing for flexible manufacturing.

4. **Augmented and Virtual Reality**. Machine learning technology is moving closer to the edge with vision systems. Smart cameras from companies like Dassault and PTX XXXXXX are integrating with software to automatically train machine learning algorithms in order to achieve high speed pattern recognition.

5. **Drones/UAVs**. Regulations are constraining the growth of the drones/UAVs market. Beyond visual line of sight (BVLOS) regulations are constraining the growth and number of use cases for drones in certain regions.

6. **Self-Driving Vehicles**. Suppliers of traditional XXXXXX are seeking to provide fixed-path navigation guidance.
7 Key Use Cases

Chapter Overview
This chapter highlights 38 specific examples from a range of industries (10+ different end-user industries) including the automotive, consumer electronics, consumer packaged goods, and OEM industries. The examples are clustered into the 12 most common I4.0 use cases.

Section Overview

<table>
<thead>
<tr>
<th>7.1</th>
<th>Additive Production</th>
<th>7.5</th>
<th>Data-driven Inventory Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.1</td>
<td>Mercedes-Benz Trucks reduces costs with 3D printed spare parts</td>
<td>7.5.1</td>
<td>Schneider Electric identifies opportunity to reduce 54% by 30%</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Siemens accelerates repair process by a factor of 10 using 3D printer parts</td>
<td>7.5.2</td>
<td>AR cases 2-months per year with smart bin system</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Oake uses AM to reduce manufacturing costs of fixtures by 65%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7.2</th>
<th>Advanced Digital Product Engineering</th>
<th>7.6</th>
<th>Data-driven Quality Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.1</td>
<td>SEAT cuts development time by 30% with virtual reality</td>
<td>7.6.1</td>
<td>OPEL reduces programming and measuring time by 100%</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Valeo uses AM to cut cost and development time by ~90%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.3</td>
<td>Bausch+Strobel uses VR + digital twin to reduce time to market by ~30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.4</td>
<td>Rand moves towards digital twin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7.3</th>
<th>Augmented Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.1</td>
<td>Bühler reduces waiting time by 50% using AR</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Hilti uses augmented reality to streamline operations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7.4</th>
<th>Data-driven Asset/Plant Performance Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.1</td>
<td>Audi uses advanced analytics to realize millions in cost savings</td>
</tr>
<tr>
<td>7.4.2</td>
<td>KIANA Systems uses machine vision & analytics to reduce error rate</td>
</tr>
<tr>
<td>7.4.3</td>
<td>WFF Tex improves machine throughput using cloud analytics</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Stanley Black & Decker increases OEE by 24% and first pass quality by 15%</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Maxxly uses autonomous forklifts to increase production capacity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7.9</th>
<th>Predictive Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.9.1</td>
<td>HPE uses edge gateways + analytics to prevent wind turbine failures</td>
</tr>
<tr>
<td>7.9.2</td>
<td>Cisco helps automotive OEM save ~$40M in downtime</td>
</tr>
<tr>
<td>7.9.3</td>
<td>Sybre Labs helps O&G operator save hundreds of man-days of work</td>
</tr>
</tbody>
</table>

Chapter Takeaways
1. Out of the 12 digital product engineering use cases, predictive maintenance will be the largest use case with increased customer demand for customized parts. Additionally, additive manufacturing and AR/VR adoption, advanced analytics and edge computing will be the fastest growing use cases from 2018 to 2023, driven by the need for increased operational efficiency and cost savings.

2. The adoption of predictive maintenance and edge computing will drive the fastest growing use cases, as companies seek to reduce costs and improve the reliability of their operations. The combination of additive manufacturing and AR/VR technologies is expected to transform the manufacturing industry, allowing for faster product development and improved quality control.

3. The examples cited in this chapter demonstrate the potential impact of these technologies across a range of industries, from automotive and consumer electronics to consumer packaged goods and OEM industries. These examples serve as a roadmap for companies looking to leverage digital product engineering to drive innovation and productivity gains in their operations.
8 I4.0 Adoption Strategies

Chapter Takeaways

1. XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX are more likely to adopt IoT products and strategies.

2. XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX are key focuses of smart factory initiatives.

3. XXXXXXXXXX XXXXXX are leading the way in I4.0 readiness due to their offerings and investments in various Connected Industry building blocks and I4.0 supporting technologies.

8.1 OEMs

Section Overview

OEMs across a variety of industries are creating connected products and services to differentiate their offerings and create new service revenue streams.

Subsection Overview

Case Studies

<table>
<thead>
<tr>
<th>#</th>
<th>Company</th>
<th>Industry</th>
<th>Strategy Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Liebherr</td>
<td>Construction equipment</td>
<td>LiDAT fleet management for construction equipment</td>
</tr>
<tr>
<td>2</td>
<td>Rolls-Royce</td>
<td>Aircraft engines</td>
<td>Condition monitoring for aircraft engines</td>
</tr>
<tr>
<td>3</td>
<td>Kärcher</td>
<td>Agriculture machinery</td>
<td>Cleaning machinery fleet management</td>
</tr>
<tr>
<td>4</td>
<td>Heidelberg</td>
<td>Print industry</td>
<td>Connected printing machines</td>
</tr>
<tr>
<td>5</td>
<td>TRUMPF</td>
<td>Manufacturing</td>
<td>Sheet metal & laser cutting tools</td>
</tr>
<tr>
<td>6</td>
<td>Heidelberg</td>
<td>Printing presses</td>
<td>Connected printing machines</td>
</tr>
<tr>
<td>7</td>
<td>Krones</td>
<td>Food & beverage</td>
<td>Bottling and packing machines</td>
</tr>
<tr>
<td>8</td>
<td>Engel</td>
<td>Manufacturing</td>
<td>Injection molding machines</td>
</tr>
<tr>
<td>9</td>
<td>thyssenkrupp</td>
<td>Elevator</td>
<td>Elevator OEM I4.0 adoption strategy</td>
</tr>
<tr>
<td>10</td>
<td>KONE</td>
<td>Elevator</td>
<td>Elevator OEM I4.0 adoption strategy</td>
</tr>
<tr>
<td>11</td>
<td>Otis</td>
<td>Elevator</td>
<td>Elevator OEM I4.0 adoption strategy</td>
</tr>
<tr>
<td>12</td>
<td>Schindler</td>
<td>Elevator</td>
<td>Elevator OEM I4.0 adoption strategy</td>
</tr>
</tbody>
</table>

Section Takeaways

1. Tier 2/component suppliers and industries with moveable equipment, remote/high value assets, or data-driven products are more likely to adopt IoT products and strategies.

2. Construction equipment, elevator, and agricultural machinery OEMs are leading the way in I4.0 adoption, implementing best in class solutions.
9.1 Plattform Industrie 4.0

Plattform Industrie 4.0

www.plattform-i40.de

Founded: 2013

Members: 6000+ via the associations

The Plattform Industrie 4.0 was founded by the three German associations VDMA (Mechanical Engineering Industry Association), ZVEI (regulatory and economic policy authority of the electrical and electronics industry) and BITKOM (Germany’s digital association) and in 2015 extended by stakeholders from politics (Federal Government Ministries of Education & Research, Economics & Technology), research (Fraunhofer Gesellschaft, National Academy for Science and Engineering, German Research Center Artificial Intelligence) and highly innovative companies like

![Partners of Plattform Industrie 4.0]

Our research and interviews with industry experts revealed that RAMI 4.0 is watched with interest, but seems currently too academic and theoretical.

- 1. reference architectures, standards and norms
- 2. research and innovation
- 3. security of networked systems
- 4. legal framework
- 5. training, education and training

In December 2016, a collaboration with the Industrial Internet Consortium (IIC) was announced. Further cooperations have been made with Japan (Oct. 2015) and with China via the Sino-German Symposium (Oct./Nov. 2015). “Competitive” (not developing market solutions), thus providing a safe and neutral layer to discuss and resolve common problems.

164 Source: Plattform Industrie 4.0 (engl.)
10 Appendix

10.1 Market definition, sizing, and methodology

10.1.1 Industry 4.0 definition:

The term Industrie 4.0 (I4.0) was introduced by German thought leaders at the 2011 Hannover Fair Exhibition and has since been adopted around the globe as the common term to describe the 4th industrial revolution. While there is no single widely-accepted definition of the I4.0 market, this report defines the overall I4.0 market as the sum of the Connected Industry building blocks market (the manufacturing subset of the Industrial Internet of Things [IIoT]) and the market for other I4.0 supporting technologies.

10.1.2 IoT definition:

The Internet of Things (IoT) is defined as a network of Internet-enabled physical objects, which aims at integrating every object for interaction via embedded systems, network communications, backend computing, and applications typically in the cloud. It allows objects to communicate with each other, access information on the Internet, capture store and retrieve data, and interact with users as well as other systems and applications, creating smart connected environments.
10.1.3 IIoT and Connected Industry definition:

Industrial IoT (IIoT) is a subset of the Internet of Things (IoT) which refers to heavy industries such as manufacturing, energy, oil and gas, and agriculture in which industrial assets are connected to the internet. Within IoT, different segments are more “industrial” than others, and “Connected Industry”, which specifically focuses on manufacturing, is on the most industrial end of the spectrum as shown in the exhibit below:

10.1.4 Connected Industry building blocks definition:

The Connected Industry market can be broken down in to six building blocks that together form Connected Industry solutions:

1. **Cyber Security**: security tools, technologies, and methods used throughout all building blocks
2. **Hardware**: the chips, sensors, & gateways used to build and connect smart devices
3. **Connectivity**: the protocols and services required to achieve connect industrial equipment
4. **Cloud, Platform, & Analytics**: hosting environments, IoT platforms, and data analytics & AI
5. **Applications**: software programs that are built on top of IoT platforms
6. **System Integration**: the services associated and with designing, planning, building, and operating I4.0 solutions
The table below describes the sub-elements of each Connected Industry building block:

<table>
<thead>
<tr>
<th>Cloud, Platform, & Analytics</th>
<th>IoT AEP Platforms</th>
<th>AEPs have specific features that offer rule engine & event management, APIs for business apps, integration SDKs for endpoints, integrated development environment and application marketplace.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud, Platform, & Analytics</td>
<td>IoT DM Platforms</td>
<td>DM platforms support device monitoring and management, bidirectional command & control, over-the-air updates and application management</td>
</tr>
<tr>
<td>Cloud, Platform, & Analytics</td>
<td>IoT Cloud backends (public, private)</td>
<td>Software backend that aggregates inbound streaming data, handles processing and storage in databases for multiple data models/formats (e.g., relational, non-relational, key-value, etc.) and scales as required</td>
</tr>
<tr>
<td>Cloud, Platform, & Analytics</td>
<td>IoT Connectivity Platforms</td>
<td>Connectivity platforms support different protocols/data formats, ensuring bidirectional communication with all devices and ability to monitor network usage generating notifications and alerts</td>
</tr>
<tr>
<td>Cloud, Platform, & Analytics</td>
<td>Advanced analytics</td>
<td>Advanced Analytics platforms have specific features that allow for advanced analytics on IoT data through AI/machine learning, streaming analytics and complex algorithms</td>
</tr>
<tr>
<td>Communications</td>
<td>Cellular - Licensed M2M (traditional - 2G-4G)</td>
<td>Operator services related to 2G, 3G and 4G technologies in the licensed spectrum</td>
</tr>
<tr>
<td>Communications</td>
<td>Cellular - Licensed LPWAN</td>
<td>Operator services related to LPWAN technologies in the licensed spectrum (NB-IoT, LTE-M)</td>
</tr>
<tr>
<td>Communications</td>
<td>Cellular - Unlicensed LPWAN</td>
<td>Operator services related to LPWAN technologies in the unlicensed spectrum (e.g., Lora, Sigfox, Ingenu, etc.)</td>
</tr>
<tr>
<td>Communications</td>
<td>Cellular - 5G</td>
<td>Operator services related to 5G technologies in the licensed spectrum</td>
</tr>
<tr>
<td>Communications</td>
<td>Satellite</td>
<td>Operator services related to satellite technologies</td>
</tr>
<tr>
<td>Communications</td>
<td>Wireline</td>
<td>Operator services related to wireline technology/Wi-Fi</td>
</tr>
<tr>
<td>Communications</td>
<td>Other</td>
<td>Other operator service revenue (e.g., mesh networks, etc.)</td>
</tr>
<tr>
<td>Hardware</td>
<td>Chips</td>
<td>Semiconductors used in IoT devices and communications equipment</td>
</tr>
<tr>
<td>Hardware</td>
<td>Sensors</td>
<td>Sensors used in IoT devices</td>
</tr>
<tr>
<td>Hardware</td>
<td>Operating System</td>
<td>Operating systems used in IoT devices</td>
</tr>
<tr>
<td>Hardware</td>
<td>Edge applications</td>
<td>Applications that are developed and run specifically on gateways and devices</td>
</tr>
<tr>
<td>Hardware</td>
<td>Edge analytics</td>
<td>Analytics services that are developed and run specifically on gateways and devices</td>
</tr>
<tr>
<td>Hardware</td>
<td>Communications modules</td>
<td>Package of antenna, chipset, etc. that allows for connectivity</td>
</tr>
<tr>
<td>Hardware</td>
<td>SIM cards</td>
<td>SIM cards</td>
</tr>
</tbody>
</table>

Table 81: Connected Industry building block sub-elements
Hardware	Routers & Gateways	Routers & Gateways
Hardware | Boards and small components | Circuit boards, transistors, capacitors and other electronics equipment
Hardware | Other hardware components | Other hardware required for IoT devices (e.g., screens, speakers, lamps, etc.)

System Integration | Consulting | Consulting services are advisory services by outsourced providers that help businesses identify IoT opportunities; create business cases and roadmaps; assesses organizational readiness, governance, risk, legal ramifications, security and business process redesign; and select the product, vendor or technology. In doing so, these services help align technology strategies with business or process strategies. These services support IoT initiatives by providing strategic, architectural, operational and implementation planning.

System Integration | Implementation | Implementation services customize or develop IoT solutions, assets and processes, and then integrate these solutions, assets and processes with existing infrastructure and processes. They also include product engineering of sensors/embedded devices, sensor installation, hardware/software/network implementation, and application and device testing in various conditions.

System Integration | Operations | Operations services provide day-to-day management and operation of IoT assets and processes. These include related software and hardware support services, as applicable. They may include infrastructure management, application management, device management, performance monitoring, remote diagnostics, authentication, billing and customer support. Analytics operations, which seek to leverage data associated with sensor readings and networked systems’ operational state data, are a key part of operations. The analytics efforts seek to synthesize raw operational data, as well as create predictive algorithms into actionable information and recommendations.

Applications | Smart phone applications | Building and maintaining applications that make use of IoT data on smartphones (esp. Android and Apple)

Applications | Web based applications | Building and maintaining applications that make use of IoT data in web-browser environments

Applications | Application development environments | Specific development tools that let computer scientists program, test, and deploy applications in the cloud and on the device

Applications | Backend integration | Integration of IoT applications and data to other enterprise services (e.g., ERP, CRM systems) including programming of standard APIs and SDKs and other data translation.

Table 81 (Continued): Connected Industry building block sub-elements
<table>
<thead>
<tr>
<th>Applications</th>
<th>Other applications</th>
<th>Specific applications that make use of IoT data which are not programmed on the web or in the smartphone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyber Security</td>
<td>Device security</td>
<td>Specific security features including hardware (e.g., TPMs, circuit shielding) and software solutions (e.g., secure boot) that enhance the level of security on the device layer.</td>
</tr>
<tr>
<td>Cyber Security</td>
<td>Communications security</td>
<td>Specific security features that ensure data is safely encrypted while in transit (e.g., AES, SSL) and unwanted intrusions are detected/prevented (e.g., firewalls, IDS/IPS)</td>
</tr>
<tr>
<td>Cyber Security</td>
<td>Cloud security</td>
<td>Specific security features that protect sensitive information stored in the cloud (i.e., disk encryption for data at rest) and ensures only authorized access is granted (i.e., platform/application/3rd party verification)</td>
</tr>
<tr>
<td>Cyber Security</td>
<td>Lifecycle management</td>
<td>Continuous processes required to keep the security of an IoT solution up-to-date from deployment to decommissioning (e.g., activity monitoring, regular security updates/patches)</td>
</tr>
</tbody>
</table>

Table 81 (Continued): Connected Industry building block sub-elements
Supporting technologies definition:

There are six supporting technologies that are deployed alongside Connected Industry building blocks in I4.0 solutions:

- **Additive Manufacturing**: the process of joining materials (polymers, metals, ceramics, etc.) from 3D models to make industrial prototypes or low volume products

- **Augmented and Virtual Reality**: tools that immerse users in digital worlds in order to help them design and operate industrial products and systems

- **Collaborative Robotics**: smart, flexible, easy to train robots which enable safe human-machine interaction in factories without the need for fences or cages

- **Connected Machine Vision**: advanced industrial cameras that simultaneously communicate with industrial control systems and higher-level image management and analytics systems

- **Drones/UAVs**: remotely controlled aerial vehicles frequently equipped with cameras and other sensors to collect data from hard to reach industrial assets

- **Self-Driving Vehicles**: a subset of the automated guided vehicle (AGV) market that incorporates I4.0 technologies such as machine vision and advanced analytics to flexibly navigate factory floors without dependence on physical markers and fixed paths

The supporting technologies market is segmented into these six categories and includes all products and services associated with I4.0 applications of the technology.

10.1.5 Market Sizing:

IoT Analytics’ market sizing for the **overall I4.0 market** is based on a data model augmented by the input of industry experts and a thorough review of economic and revenue data to form multi-year projections on expected revenue changes. The Connected Industry building blocks portion of the market is segmented by both building block and region, and the supporting technologies portion of the market is segmented by supporting technology only. The overall I4.0 market model is based on the sum of the Connected Industry building blocks market and the supporting technologies market.
The **Connected Industry building blocks market model** for 2017 is based on both a top down as well as a bottom-up approach. The top-down approach starts with the overall IoT market and then estimates the proportion of that market that falls under the Connected Industry category. The overall IoT market is based on IoT Analytics global forecast model that has been developed and validated with various industry experts over the last 5 years. The bottom-up approach is based on various IoT Analytics deep-dives (e.g., IoT Platforms, Predictive Maintenance) in which actual and estimated revenue numbers from key market participants were added up to form a total market size. Regional and building block splits are based both on the results of the interview questionnaire as well as through the use of web indicators for regional and segment specific IoT activity (e.g., number of employees working on IoT solutions in a specific country).

The **supporting technologies market model** for 2017 is based on a top-down approach and is calculated based on various expert inputs and an estimation of the I4.0 proportion of each supporting technology market. For instance, the “Drones/UAVs in I4.0 use cases” market is developed by taking the overall drones/UAVs market and subtracting out all of the non-I4.0 use cases, such as military drones and consumer applications. Inputs to the supporting technologies market model include expert interviews, publicly available financial statements, 3rd party research reports, and IoT Analytics internal intelligence.

The **key use cases** market model is a derivative model based on the overall I4.0 market model. The proportion of revenues associated with particular use cases are estimated based on surveys, IoT projects lists, expert interviews, and IoT Analytics internal intelligence.
10.1.6 Methodology:

The main objectives of this research are:

- To define and segment the technological components that comprise the Industry 4.0 market
- To estimate the worldwide Industry 4.0 market size with segmentation by technology (for both Connected Industry building blocks and supporting technologies) and by region (for Connected Industry only)
- To understand key I4.0 technology trends and how these trends are disrupting existing industries
- To identify how companies are implementing I4.0 technologies to realize key I4.0 use cases and estimate the market size and growth rates of those key use cases
- To examine the I4.0 adoption strategies of OEMs, factories, and industrial automation suppliers

This report is the result of almost two years of research including:

- Select insights and statistics from existing IoT Analytics reports and surveys on IoT security, IoT platforms, predictive maintenance, LPWAN, and smart cities
- Interviews of 100+ experts covering a variety of I4.0 technologies and industries, including:
 - 25+ expert interviews with key stakeholders in the IoT security market (technology vendors and technology users)
 - 20+ industry interviews and vendor briefings with executive level IoT solution experts
 - 10+ interviews and briefings with vendors and users of industrial edge connectivity solutions
 - 10+ interviews with MES vendors, integrators, and end users
 - 40+ industry interviews and vendor briefings with executive level IoT solution experts, all focused on LPWAN
 - 15+ leading IoT and I4.0 conferences (e.g., IoT Solutions World Congress, IOTHINGS Milan, Hannover Messe, Bosch ConnectedWorld, Industry of Things World, SPS IPC Drives, Internet of Manufacturing, IoT Tech Expo, IoT World, Hitachi NEXT, PTC Liveworx, etc.)
- Secondary research involved mainly desktop research examining annual reports, press releases, whitepapers, company products and services portfolios, government and economic data, regulations and roadmaps, and industry case studies.
The research is based on a rigorous process with academic and industry recognized methodologies (such as web-based analytics, trends analysis, and publicly available data on the market e.g., annual reports, company websites). The insights gained through these methodologies were enhanced by IoT expertise from internal research analysts and the consulting team.
10.2 List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3DP</td>
<td>3D Printing</td>
</tr>
<tr>
<td>5G FWA</td>
<td>5th Generation Fixed Wireless Access</td>
</tr>
<tr>
<td>AM</td>
<td>Additive Manufacturing</td>
</tr>
<tr>
<td>AES</td>
<td>Advanced Encryption Standard</td>
</tr>
<tr>
<td>AMQP</td>
<td>Advanced Message Queuing Protocol</td>
</tr>
<tr>
<td>AWS</td>
<td>Amazon Web Services</td>
</tr>
<tr>
<td>AEP</td>
<td>Application Enablement Platform</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>AR</td>
<td>Augmented Reality</td>
</tr>
<tr>
<td>AGV</td>
<td>Autonomous Guided Vehicle</td>
</tr>
<tr>
<td>AMR</td>
<td>Autonomous Mobile Robot</td>
</tr>
<tr>
<td>BLE</td>
<td>Bluetooth Low Energy</td>
</tr>
<tr>
<td>BPO</td>
<td>Business Process Outsourcing</td>
</tr>
<tr>
<td>Cobot</td>
<td>Collaborative Robot</td>
</tr>
<tr>
<td>CAGR</td>
<td>Compound annual growth rate</td>
</tr>
<tr>
<td>CoAP</td>
<td>Constrained Application Protocol</td>
</tr>
<tr>
<td>CRM</td>
<td>Customer Relationship Management</td>
</tr>
<tr>
<td>DCS</td>
<td>Distributed Control System</td>
</tr>
<tr>
<td>DDoS</td>
<td>Distributed Denial of Service</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise Resource Planning</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible Markup Language</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>GB</td>
<td>Gigabytes</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile Communication</td>
</tr>
<tr>
<td>GSMA</td>
<td>Groupe Speciale Mobile Association</td>
</tr>
<tr>
<td>HMI</td>
<td>Human Machine Interface</td>
</tr>
<tr>
<td>HTTP</td>
<td>HyperText Transfer Protocol</td>
</tr>
<tr>
<td>Wi-Fi</td>
<td>IEEE 802.11x (Wi-Fi Alliance)</td>
</tr>
<tr>
<td>IIC</td>
<td>Industrial Internet Consortium</td>
</tr>
<tr>
<td>IIoT</td>
<td>Industrial Internet of Things</td>
</tr>
<tr>
<td>ISM</td>
<td>Industrial, Scientific, Medical</td>
</tr>
<tr>
<td>I4.0</td>
<td>Industry 4.0</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>IaaS</td>
<td>Infrastructure as a Service</td>
</tr>
<tr>
<td>IO</td>
<td>Input Output</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>IDE</td>
<td>Integrated Development Environment</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IoT</td>
<td>Internet of Things</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>IDS</td>
<td>Intrusion Detection System</td>
</tr>
<tr>
<td>IPS</td>
<td>Intrusion Protection System</td>
</tr>
<tr>
<td>JSON</td>
<td>Javascript Object Notation</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LoRa</td>
<td>Long Range (low power network)</td>
</tr>
<tr>
<td>LTE</td>
<td>Long Term Evolution (of 4g communication standard)</td>
</tr>
<tr>
<td>LTE-M</td>
<td>Longer Term Evolution for Machines</td>
</tr>
<tr>
<td>LPWAN</td>
<td>Low Power Wide Area Network</td>
</tr>
<tr>
<td>ML</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>M2M</td>
<td>Machine to Machine</td>
</tr>
<tr>
<td>MES</td>
<td>Manufacturing Execution System</td>
</tr>
<tr>
<td>MB</td>
<td>Megabytes</td>
</tr>
<tr>
<td>MBSE</td>
<td>Model-Based Systems Engineering</td>
</tr>
<tr>
<td>MQTT</td>
<td>Message Queueing Telemetry Transport</td>
</tr>
<tr>
<td>MEMS</td>
<td>Micro Electro Mechanical Systems</td>
</tr>
<tr>
<td>MCU</td>
<td>Microcontroller</td>
</tr>
<tr>
<td>MPU</td>
<td>Microprocessor</td>
</tr>
<tr>
<td>NEMS</td>
<td>Nanoelectromechanical Systems</td>
</tr>
<tr>
<td>NB-IoT</td>
<td>Narrowband IoT</td>
</tr>
<tr>
<td>OPC DA</td>
<td>OLE for Process Control Data Access</td>
</tr>
<tr>
<td>OPC</td>
<td>OLE for Process Control or Open Platform Communications</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>OPC UA</td>
<td>Open Platform Communications Unified Architecture</td>
</tr>
<tr>
<td>OS</td>
<td>Operating System</td>
</tr>
<tr>
<td>OT</td>
<td>Operational Technology</td>
</tr>
<tr>
<td>OEM</td>
<td>Original Equipment Manufacturer</td>
</tr>
<tr>
<td>OTA</td>
<td>Over-The-Air</td>
</tr>
<tr>
<td>OEE</td>
<td>Overall Equipment Effectiveness</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PLM</td>
<td>Product Lifecycle Management</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable Logic Controller</td>
</tr>
<tr>
<td>PoC</td>
<td>Proof of Concept</td>
</tr>
<tr>
<td>RFID</td>
<td>Radio-Frequency Identification</td>
</tr>
<tr>
<td>RPMA</td>
<td>Random Phase Multiple Access</td>
</tr>
<tr>
<td>RTU</td>
<td>Remote Terminal Units</td>
</tr>
<tr>
<td>REST</td>
<td>Representational State Transfer</td>
</tr>
<tr>
<td>ROI</td>
<td>Return On Investment</td>
</tr>
<tr>
<td>SSL</td>
<td>Secure Sockets Layer</td>
</tr>
<tr>
<td>SDV</td>
<td>Self-Driving Vehicle</td>
</tr>
<tr>
<td>SaaS</td>
<td>Software as a Service</td>
</tr>
<tr>
<td>SDK</td>
<td>Software Development Kit</td>
</tr>
<tr>
<td>SPC</td>
<td>Statistical Process Control</td>
</tr>
<tr>
<td>SQL</td>
<td>Structured Query Language</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control and Data Acquisition</td>
</tr>
<tr>
<td>SI</td>
<td>System Integrator</td>
</tr>
<tr>
<td>TSN</td>
<td>Time-Sensitive Networking</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>TLS</td>
<td>Transport Layer Security</td>
</tr>
<tr>
<td>TPM</td>
<td>Trusted Platform Module</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>UAV</td>
<td>Unmanned Aerial Vehicle</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>VFD</td>
<td>Variable Frequency Drive</td>
</tr>
<tr>
<td>VPN</td>
<td>Virtual Private Network</td>
</tr>
<tr>
<td>VR</td>
<td>Virtual Reality</td>
</tr>
<tr>
<td>WAN</td>
<td>Wide Area Network</td>
</tr>
<tr>
<td>WLAN</td>
<td>Wireless Local Area Networks</td>
</tr>
<tr>
<td>WEF</td>
<td>World Economic Forum</td>
</tr>
</tbody>
</table>
10.3 List of Exhibits

Exhibit 1: Technology drivers behind the Internet of Things

Exhibit 2: IoT categories sorted from least to most industrial

Exhibit 3: Comparison of IoT and Industry 4.0 in terms of industry and technology scope (adapted from Plattform Industrie 4.0)

Exhibit 4: Relationship between I4.0, Connected Industry building block, and supporting technologies.

Exhibit 5: Connected Industry building blocks and supporting technologies enable I4.0 use cases

Exhibit 6: The four industrial revolutions (based on DFKI)

Exhibit 7: Global interest in Industry 4.0 and related terms over the last five years

Exhibit 8: Overview of other I4.0/smart manufacturing Initiatives around the globe

Exhibit 9: Core elements of Industry 4.0

Exhibit 10: Global I4.0 market 2017-2023 (Source: IoT Analytics)

Exhibit 11: Global Connected Industry building blocks market, by building block (Source: IoT Analytics)

Exhibit 12: Global Connected Industry building blocks market, by region (Source: IoT Analytics)

Exhibit 13: North American Connected Industry building blocks market (Source: IoT Analytics)

Exhibit 14: European Connected Industry building blocks market (Source: IoT Analytics)

Exhibit 15: Asian Connected Industry building blocks market (Source: IoT Analytics)

Exhibit 16: Global I4.0 supporting technologies market, by supporting technology (Source: IoT Analytics)

Exhibit 17: Examples of IoT devices that use MCUs or MPUs

Exhibit 18: Example sensor deployment in a packaging machine

Exhibit 19: Rapid growth of smart IO-Link sensors since 2011
Exhibit 20: ABB’s Smart Sensor

Exhibit 21: Example mesh network of Permasense sensors

Exhibit 22: SmartBridge by Pepperl+Fuchs sends IO-Link data to smart devices via Bluetooth, which can then forward the data directly to the cloud

Exhibit 23: Robotic beetle developed by Rolls-Royce in collaboration with specialists from Harvard University and the University of Nottingham

Exhibit 24: Sensor data collection using single purpose hardware and software

Exhibit 25: Remote sensor data collection with IIoT gateway

Exhibit 26: Gateways as bridge between OT and IT

Exhibit 27: Industrial connectivity pyramid

Exhibit 28: HART protocol sends digital signals over same wire as analog signals

Exhibit 29: IO-Link Master modules can be daisy chained and read values from non-IO-Link sensors

Exhibit 30: WirelessHART Network example

Exhibit 31: Example industrial network containing both Fieldbus and Industrial Ethernet devices

Exhibit 32: 2018 industrial automation protocol overview

Exhibit 33: Wireless fieldbus example from Phoenix Contact

Exhibit 34: OPC-DA compared to OPC UA

Exhibit 35: Overview of OPC UA communications structure (Source: OPC Foundation)

Exhibit 36: “The Shapers” who are working on OPC UA TSN

Exhibit 37: Three types of cloud architectures

Exhibit 38: Global IoT Platforms Market 2017-2023 by hosting environment (Source: IoT Analytics)

Exhibit 39: The technology behind an IoT platform
Exhibit 40: Advanced analytics hierarchy
Exhibit 41: Classification of analytics
Exhibit 42: Select results from a recent industrial analytics survey (Source: IoT Analytics)
Exhibit 43: Cognex ViDi uses on-premise deep learning for industrial image analysis
Exhibit 44: IBM’s Watson IoT Platform leverages both cloud and on-premise analytics
Exhibit 45: Comparison of different analytics architectures
Exhibit 46: Process flow of industrial application development using AEPs
Exhibit 47: Comparison of Industrial IoT app stores. * denotes app stores where >90% of the applications include transparent pricing. GE applications listed as “Beta” or “Soon” were not counted. PTC apps without support were not counted, Siemens MindConnect and MindAccess offerings were not counted.
Exhibit 48: I4.0 services value chain
Exhibit 49: IoT security survey results
Exhibit 50: Status-quo of IIoT cyber security solution elements and security components
Exhibit 51: Common threats & vulnerabilities across the IoT attack surface. User, Device, Gateway, Connection, Cloud, and Application.
Exhibit 52: Convergence of IT and OT
Exhibit 53: Inverse relationship between the tendency for an application to be hosted in the cloud and the importance of communication with I/O
Exhibit 54: Inductive Automation cloud architecture
Exhibit 55: Microsoft’s Platform-as-a-Service offering
Exhibit 56: Rockwell Automation’s new line of CompactLogix PLCs includes Windows 10 IoT and native connectivity to Azure
Exhibit 57: Plex MES/SCADA SaaS offering
Exhibit 58: Four categories and eight activities for which MES applications are used (Source: ZVEI)
Exhibit 59: Traditional SCADA communication stack
Exhibit 60: Four emerging methods for connecting edge devices directly to the cloud
Exhibit 61: IIoT is enabling cloud-based marketplaces for manufacturing utilization
Exhibit 62: 3D printing in the Gartner Hype Cycle (Source: Gartner [2011, 2013, 2015])
Exhibit 63: Additive manufacturing value chain
Exhibit 64: EY 3DP survey results: percentage of respondents indicating that hurdles exist (N=900 companies)
Exhibit 65: Industries that apply 3D printing today and will apply it in the future, if the intended adoption is implemented (%)
Exhibit 66: The additive manufacturing market in I4.0 use cases market (Source: IoT Analytics)
Exhibit 67: Break-even points based on cost-per-part for different manufacturing methods (Illustrative)
Exhibit 68: TRUMPF TruPrint 5000 includes three 500-watt lasers
Exhibit 69: Differences between AR and VR smart glasses
Exhibit 70: Differences between AR and VR technologies with respect to hardware costs and typical use cases
Exhibit 71: The AR/VR in I4.0 use cases market (Source: IoT Analytics)
Exhibit 72: Results from a PTC survey of >100 industrial enterprises using ThingWorx Studio asking about the desired benefits from adopting AR technology
Exhibit 73: Industrial robots doubled automotive worker productive from the late 70’s to early 90’s
Exhibit 74: Supply of industrial robotics by industry
Exhibit 75: The evolution of robotics in manufacturing
Exhibit 76: The collaborative robotics in I4.0 use cases market (Source: IoT Analytics)
Exhibit 77: Unit sales of robotics by region
Exhibit 78: Hourly cost of robots vs human operators in logistics [France]
Exhibit 79: The connected machine vision in I4.0 use cases market (Source: IoT Analytics)
Exhibit 80: Overview of drone markets and enterprise use cases
Exhibit 81: The drones/UAVs in I4.0 use cases market (Source: IoT Analytics)
Exhibit 82: AGV’s vs. SDV’s (Source: OTTO Motors)
Exhibit 83: The SDVs in I4.0 use cases market (Source: IoT Analytics)
Exhibit 84: Virtual conveyor system from Fetch Robotics
Exhibit 85: Ways in which I4.0 use cases derive value for organizations (Source: IoT Analytics)
Exhibit 86: Projected market sizes and growth rates of key I4.0 use cases
Exhibit 87: TRUMPF Telepresence architecture
Exhibit 88: TRUMPF Visual Online Support (VOS)
Exhibit 89: Digital twins of products and processes can create closed-loop systems of continuous improvement
Exhibit 90: Digital thread for tractor manufacturing
Exhibit 91: Overview of five smart factories featured in this section
Exhibit 92: TRUMPF Smart Factory in Chicago, IL
Exhibit 93: Overview of machinery at the TRUMPF Smart Factory
Exhibit 94: GE Brilliant Factory in Pune, India
Exhibit 95: Overview of GE’s Brilliant Factory concept
Exhibit 96: Audi Smart Factory
Exhibit 97: 3D printing at Audi’s toolmaking division
Exhibit 98: Audi’s logistics department is experimenting with SDVs and drones
Exhibit 99: Overview of SmartFactoryKL technology and vendors
Exhibit 100: SmartFactory OWL facility hosting Factory Hack 2017
Exhibit 101: Research and solution areas of the SmartFactory OWL
Exhibit 102: I4.0 readiness ranking of top industrial automation suppliers
10.4 List of Tables

Table 1: Leading chip suppliers
Table 2: Leading sensor suppliers
Table 3: Leading suppliers of Industrial Gateways, Protocol Converters, Networking and Computers
Table 4: Leading suppliers of Components (modems, modules, antennas, connectors, etc.)
Table 5: Overview of I/O to Field Level Protocols
Table 6: Comparison of Fieldbuses
Table 7: Industrial Ethernet protocols
Table 8: Adoption headwinds/tailwinds for database transactions
Table 9: Adoption headwinds/tailwinds for HTTP/REST
Table 10: Adoption headwinds/tailwinds for HTTP/REST
Table 11: Vendors adopting the MQTT protocol
Table 12: Popular wireless protocols by range and data rate
Table 13: Short range wireless protocols
Table 14: Long range wireless protocols
Table 15: Leading suppliers of Long range wireless solutions
Table 16: Leading suppliers of Satellite solutions
Table 17: Unlicensed LPWAN protocols in comparison
Table 18: Licensed LPWAN protocols in comparison
Table 19: Key operators of unlicensed LPWAN technologies
Table 20: Key operators of licensed LPWAN technologies
Table 21: Security considerations for various LPWAN technologies (* indicates optional controls must be implemented to achieve rating)

Table 22: Technical suitability of LPWANs for five key industrial use cases

Table 23: Leading Hosting Providers

Table 24: Leading Suppliers of IoT Platforms with Industrial Focus

Table 25: Leading suppliers of connectivity platforms

Table 26: Leading Suppliers of Industrial Edge Analytics

Table 27: Leading suppliers of Advanced Industrial Analytics (Non-Platform), IIoT Focus

Table 28: Leading suppliers of Advanced Industrial Analytics (Non-Platform), General Focus + IIoT Use Cases

Table 29: (Leading suppliers of IIoT Platforms with Native Advanced Analytics), 123-125 (Leading suppliers of system integration)

Table 30: Origin, type, and vertical focus of select systems integrators

Table 31: Leading suppliers of system integration

Table 32: Common Cyber Security Threats

Table 33: (Leading suppliers of IoT security solutions)

Table 34: Leading suppliers of IT Infrastructure security

Table 35: Leading suppliers of Endpoint Security

Table 36: Leading suppliers of Cloud security

Table 37: Traditional differences between IT and OT technologies

Table 38: Three features required for communications between MES/SCADA and PLC and I/O and the technical solutions that are helping to achieve these features for cloud SCADA/MES systems

Table 39: Factors that SCADA/MES application vendors should consider when creating cloud-based offerings
<p>| Table 40: | AM methods for polymers and metals |
| Table 41: | I4.0 use cases for additive manufacturing |
| Table 42: | Leading suppliers of AM systems (Polymer) |
| Table 43: | Leading suppliers of AM systems (metal) |
| Table 44: | Leading suppliers of AM services |
| Table 45: | Leading suppliers of AM Software |
| Table 46: | Leading suppliers of AM materials |
| Table 47: | AR/VR use cases in Industry 4.0 |
| Table 48: | Examples of PLM and AR/VR hardware partnerships |
| Table 49: | Leading suppliers of Augmented Reality glasses |
| Table 50: | Leading suppliers of Virtual Reality glasses |
| Table 51: | Leading suppliers of Application Development/Software Platform |
| Table 52: | Leading chip suppliers |
| Table 53: | Differences between traditional industrial robots and collaborative robots |
| Table 54: | Use cases for collaborative robotics |
| Table 55: | Leading suppliers of Supporting Technologies |
| Table 56: | Common applications, sensing technologies, architectures, and PLC communication methods for machine vision systems |
| Table 57: | Overview of six factory floor vision applications |
| Table 58: | Overview of three types of machine vision sensing technologies |
| Table 59: | Comparison of two machine vision architectures |
| Table 60: | Overview of three types of machine vision interfaces |</p>
<table>
<thead>
<tr>
<th>Table 61:</th>
<th>Connected machine vision use case examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 62:</td>
<td>Leading suppliers of hardware & software</td>
</tr>
<tr>
<td>Table 63:</td>
<td>Drone use cases</td>
</tr>
<tr>
<td>Table 64:</td>
<td>Leading suppliers of Drones</td>
</tr>
<tr>
<td>Table 65:</td>
<td>Use cases for self-driving vehicles</td>
</tr>
<tr>
<td>Table 66:</td>
<td>Leading suppliers of self driving robotic vehicles</td>
</tr>
<tr>
<td>Table 67:</td>
<td>IoT adoption by industry based on the number and maturity of projects</td>
</tr>
<tr>
<td>Table 68:</td>
<td>Comparison of various OEM digitalization strategies</td>
</tr>
<tr>
<td>Table 69:</td>
<td>Comparison of the digitalization efforts of four major elevator OEMs</td>
</tr>
<tr>
<td>Table 70:</td>
<td>I4.0 technologies/concepts implemented at the TRUMPF Smart Factory</td>
</tr>
<tr>
<td>Table 71:</td>
<td>I4.0 technologies/concepts implemented at GE’s Brilliant Factories</td>
</tr>
<tr>
<td>Table 72:</td>
<td>I4.0 technologies/concepts implemented at Audi’s Smart Factory</td>
</tr>
<tr>
<td>Table 73:</td>
<td>I4.0 technologies/concepts implemented at the SmartFactoryXL</td>
</tr>
<tr>
<td>Table 74:</td>
<td>I4.0 technologies/concepts implemented at SmartFactory OWL</td>
</tr>
<tr>
<td>Table 75:</td>
<td>The World Economic Forum’s list of some of the best factories in the world</td>
</tr>
<tr>
<td>Table 76:</td>
<td>List of German research institutes concentrating on Industry 4.0</td>
</tr>
<tr>
<td>Table 77:</td>
<td>Potentially positive and negative aspects of the integration of I4.0 and lean programs</td>
</tr>
<tr>
<td>Table 78:</td>
<td>Benefits of I4.0 technology on data collection for Lean Manufacturing</td>
</tr>
<tr>
<td>Table 79:</td>
<td>Estimated I4.0 impact on lean production principles by 24 Industry 4.0 project leaders at an automotive company</td>
</tr>
<tr>
<td>Table 80:</td>
<td>Components of Overall I4.0 Readiness score</td>
</tr>
<tr>
<td>Table 81:</td>
<td>Connected Industry building block sub-elements</td>
</tr>
</tbody>
</table>

© 2018 IoT Analytics. All rights reserved.
About

IoT Analytics is the leading provider of market and industry insights for the Internet of Things (IoT). The company reaches more than 40,000 people in the IoT ecosystem every month, offering the following products and services:

LATEST INSIGHTS: Latest IoT news, regular blog posts, monthly newsletter, specific white papers

MARKET REPORTS: Targeted industry reports, company databases/lists, specific IoT data sets

GO-TO-MARKET SERVICES: Sponsored publications, joint webinars, custom research for specific inquiries

IOT CONSULTING SERVICES: Bespoke IoT consulting services tailored to your needs.

Find out more at http://www.iot-analytics.com or contact us directly at: sales@iot-analytics.com

Selected recent publications

- IoT Platforms Market Report 2018-2023
- LPWAN Market Report 2018-2023
- List of 1,600 Enterprise IoT Projects 2018
- Predictive Maintenance Market Report 2017-2022
- List of 450 IoT Platform Companies 2017
Upcoming publications

• Enterprise Blockchain & IoT Market Report 2018-2023
• Smart Parking Market Report 2018-2023
• Industrial Connectivity 2019
• 5G Market Report 2019
• IoT Platforms End User Survey 2019

Subscription

Gain exclusive access to the IoT Analytics research stream by subscribing in our Membership area or contact us to find out more at: membership@iot-analytics.com

Newsletter

Sign up now for our newsletter and receive the latest IoT insights direct in your mailbox.
Main Author

MATTHEW WOPATA

Matthew is a senior analyst based in the USA, focusing on industrial technologies. He is IoT Analytics’ lead expert for Industrial IoT (incl. Industrie 4.0, Industrial Software).
Email: Matthew.Wopata@iot-analytics.com

Other Authors:

JULIAN RICKERT, KNUD LASSE LUETH, PADRAIG SCULLY

Contact Us

Do you have a question or any feedback on the report? Do you have other inquiries or ideas? Then get in touch with the authors or contact IoT Analytics at:

Address: IoT Analytics GmbH, Zirkusweg 2, 20359 Hamburg, GERMANY
Email: info@iot-analytics.com
Tel: +49 (0) 40 63 911 891